Fitbit needed for 7,000 year-old caveman

February 13, 2014 | Posted in Latest News

La Brana man

Back in 2006, a group of mountaineers climbing in north-west Spain stumbled upon the body of an ancient human man. Carbon dating put La Brana man – named after the cave in which he was discovered – at having lived about 7,000 years ago. He died in his early thirties and would have lived around the Cantabrian mountain region.

La Brana man was dark-skinned, had black or dark brown hair, yet he had jarringly blue eyes. He was also likely lactose intolerant, so you wouldn’t have wanted to be around him after a tub of Ben & Jerry’s. We know such specific details about a person who was quite literally a ‘caveman’ because fragments of his DNA were well-preserved by the cool, dry atmosphere of the cave, and researchers have been able to piece together his genome. Such is the power of DNA.

One mantra of the Quantified Self movement is the pursuit of improvement through self-knowledge – using the personal data collected through self-tracking to help improve overall well-being. And if you believe the hype of Big Data (and let’s be honest….we all do) these enormous datasets will soon be mined to unravel the secrets of what makes us tick and the actions we can take to improve our health and longevity. This is one of the ambitious aims which Quantid has in its crosshairs (click here to support our campaign).

Self-tracking revolves around the personal data we generate as we go about our day-to-day lives: the amount we sleep, the distance run, our weight and blood glucose levels. But to extract powerful correlations and trends from this quantified personal data and identify actionable behaviour change, we must also know the fundamental aspects of who we are. Like La Brana man, data on our ethnicity, gender, physical traits and susceptibility to various diseases and medical conditions are essentials. Two separate individuals might show very similar patterns in their self-tracking data, but if one is a Caucasian female with diabetes while the other is an Asian male with a nut allergy, the recommendations for health improvements might be widely different.

The obvious way to collect information on physiological traits is self-reporting. We’ve all filled out surveys that have asked about our ethnicity, health status, and the medical conditions we suffer from. But self-reporting is subjective. Ethnicity is a good example: just because someone identifies as Caucasian, doesn’t mean their ancestry is 100% white. My 23andMe results show that I’m 51% European, 42% African and 2% Native American. You can see how inaccurate it’d be were I to self-report as purely ‘White’, ‘Black’ or ‘Asian’.

Furthermore, none of us can’t report on our susceptibility to various medical conditions until these conditions actually manifest themselves, or are revealed through specific tests. A predisposition to obesity or high cholesterol will probably go unnoticed until our bathroom scale is continually delivering bad news, or our blood tests report persistently high LDL.

All our physiological traits are contained within each of individual genomes and I think incorporating DNA information is one of the most exciting aspects of the quantified-self phenomenon. Armed with our complete genome, the analytics engines which are set loose on our personal datasets will have access to awesomely granular information on our gender, race, anatomy, disease susceptibility and much more. And as future research forces the genome to reveal even more of its secrets, these analytic functions will become ever more powerful.

It’s an enjoyable pastime of tech enthusiasts to make extravagant predictions about our technological future, never seeming to notice that our flying cars have not yet materialized. But I think it’s hard to overstate the impact which the marriage of genetic information and quantified data like sleep, mood and activity, will have on driving us towards longer, more healthy and more happy lives. So we’ve got hold of La Brana man’s DNA, now all we need is to find his fitbit.

Read more

You’re a Quantified Self-er and don’t even know it

July 4, 2013 | Posted in Latest News, Quantified Self


As with any new phenomenon that’s gradually emerging into the mainstream, the concept of self-tracking, or self-quantification, is not widely understood. The term can mean different things to different people and different communities. The quantified self (QS) movement would consider the regular measurement of any personal detail, regardless of how obscure, as a form of self-tracking. But my aunt recording her weight, exercise and diet sees this as simply part of achieving her goal of shedding a few pounds.

Defining ‘self-tracking’

Crystallizing out a definition for ‘self-tracking’ as it pertains to the new QS movement is important because it allows people to recognize that they’re in fact part of this growing community. So, I thought it’d be worth having a stab at defining what exactly self-tracking is:

“Self-tracking is the process of recording any aspect of your physical activity, cognition, wellbeing, lifestyle and environment as quantifiable data on a regular, ongoing basis, with the intention of identifying actionable changes that lead to self-improvement.”

Let’s break this definition down:

I think the categories of “activity, cognition, wellbeing, lifestyle and environment” are sufficiently broad to include virtually any personal aspect that someone would want to quantify and track about themselves, although I’m sure there’re individual metrics that fall between the gaps.

  • Activity covers all physical exercise and movement
  • Cognition relates to mental functions like memory and alertness
  • Wellbeing is perhaps the broadest category, covering all aspects of health – mood, blood markers, pain, medical conditions etc. – diet, medication and supplementation
  • Lifestyle is another broad category, and includes activity on Facebook, time spent commuting, or vices like smoking and gambling
  • Environment relates to your surrounding conditions, such as the weather (was it humid today?), pollen count and background noise

A fundamental aspect about personal measurements is that they’re quantifiable in some way. This is obvious for a metric like body weight, which is always expressed as a value with associated units (76kg), but less obvious for a cognitive metric like memory. Ultimately, whatever the metric, the measurement must be translatable into a numerical value. So, expressing memory on a particular day as “poor” can, for example, be numerically rated as 2 out of 5, on a scale where a value of 1 is ‘bad’ and 5 is ‘excellent’.

It might seem obvious, but there must be some degree of regularity in taking measurements. Noting your sleep duration a couple times, weeks apart, cannot be considered as self-tracking. But there needs to be some flexibility with frequency – a metric like sleep is best recorded daily, but applying the same regularity to your LDL cholesterol is probably overkill.

The final component of the definition might prove controversial: the aim of self-tracking, the reason for collecting these regular measurements, is to instigate some form of personal change. I think this aspect is necessary because, without it, rudimentary or incidental forms of data collecting, like a child’s height as it grows or your record of FourSquare check-ins, all become forms of self-tracking. But if these are not leveraged for self-improvement, they’re not strictly ‘self-tracking’.

With this definition it’s obvious QS is a much larger phenomenon than is recognized. Take a look at your own behavior. Are you tracking your weekly jog on Runkeeper? Is there a Jawbone UP or Nike Fuelband strapped to your wrist, or a fitbit in your pocket? Perhaps you’re using RescueTime to measure your productivity, or mappiness to track your mood? You might not know it, but you’re probably a Quantified Self-er. So, on behalf of the movement…welcome! Things are about to get pretty exciting.

Read more